Progress and Future Prospects for Particle-Based Simulation of Hypersonic Flow

نویسندگان

  • Thomas E. Schwartzentruber
  • Iain D. Boyd
چکیده

The direct simulation Monte Carlo method (DSMC) has evolved over 50 years into a powerful numerical technique for the computation of thermochemcial nonequilibrium gas flows. In this context, nonequilibrium means that velocity and internal energy distribution functions are not in equilibrium forms due to a low number of intermolecular collisions within a fluid element. In hypersonic flow, nonequilibrium conditions occur at high altitude and in regions of flow fields with small length scales. This article highlights significant developments in particle simulation methods (since 2001) applied specifically to hypersonic flows, which now includes Molecular Dynamics in addition to DSMC. Experimental measurements that have led directly to improved DSMC models will be highlighted. Algorithm development for DSMC aimed at increasing computational efficiency is discussed with a focus on hybrid particle-continuum methods. New research that applies all-atom Molecular Dynamics simulation and trajectory-based DSMC simulation to normal shock waves is summarized. Finally, a discussion of state-resolved DSMC modeling is included with reference to future prospects for particle simulation methods and in particular for the DSMC method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

A Modular Particle-continuum Numerical Algorithm for Hypersonic Non-equilibrium Flows

A MODULAR PARTICLE-CONTINUUM NUMERICAL ALGORITHM FORHYPERSONIC NON-EQUILIBRIUM FLOWS byThomas Edward Schwartzentruber Chairperson: Iain D. Boyd Hypersonic vehicles traveling at high altitudes experience conditions ranging fromrarefied to continuum flow. Even within a mostly continuum flow, there may belocal regions of rarefied (or non-equilibrium) flow generated by sharp leading...

متن کامل

Engineering of Membrane Gas Separation Processes: State of The Art and Prospects

Membrane processes are today one of the key technologies for industrial gas separations and show growing interest for future use in sustainable production systems. Besides materials development, dedicated engineering methods are of major importance for the rigorous and most efficient design of membrane units and systems. Starting from approaches based on simplified hypotheses developed in the 5...

متن کامل

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013